

Height-to-fetch ratio

100:1 fetch rule of thumb

Neutral conditions

< for unstable conditions</pre>

Instrument placement

 Often a compromise between a representative footprint and avoiding advective effects

High frequency attenuation

Line-averaging along instrument path

– loss of variance
 Spatial separation between instruments

- loss of covariance
- Samples eddies > ~2d

Variance and covariance

Variance
$$\overline{\chi_c^{'2}} = \frac{1}{\Delta t} \int_t^{t+\Delta t} (\chi_c - \overline{\chi_c})^2 dt \qquad \approx \int_0^{\infty} S_{\chi_c \chi_c}(n) dn$$

Covariance $\overline{w' \chi_c^{'}} = \frac{1}{\Delta t} \int_t^{t+\Delta t} (w - \overline{w})(\chi_c - \overline{\chi_c}) dt \approx \int_0^{\infty} C_{w \chi_c}(n) dn$
 $= \text{eddy flux}$ Time domain Frequency domain

 $S_{\chi c}$ = contribution of the total variance of χ_c per unit dn $C_{w\chi c}$ = contribution of total covariance of $w\chi_c$ per unit dn

Eddy fluxes: 1D, steady state, homogeneous flows

Variance spectrum - high-cut filter

